论文标题
切碎频道的重新组装代码
Reassembly Codes for the Chop-and-Shuffle Channel
论文作者
论文摘要
我们研究了从一个将输入序列打破到一组随机长度的无序片段中的通道中检索数据的问题,我们称这是切碎和换空通道。每个片段的长度遵循几何分布。我们提出了嵌套的Varshamov-Tenengolts(VT)代码以恢复数据。我们通过数值评估了我们方案的错误率和复杂性。我们的结果表明,随着输入长度的增加,解码误差降低,并且我们的方法的复杂性明显低于基线蛮力方法。我们还提出了一种用于VT代码的新结构,量化了所需的奇偶校验位的最大数量,并表明与已知结果相比,我们的方法需要更少的均衡位。
We study the problem of retrieving data from a channel that breaks the input sequence into a set of unordered fragments of random lengths, which we refer to as the chop-and-shuffle channel. The length of each fragment follows a geometric distribution. We propose nested Varshamov-Tenengolts (VT) codes to recover the data. We evaluate the error rate and the complexity of our scheme numerically. Our results show that the decoding error decreases as the input length increases, and our method has a significantly lower complexity than the baseline brute-force approach. We also propose a new construction for VT codes, quantify the maximum number of the required parity bits, and show that our approach requires fewer parity bits compared to known results.