论文标题

机器学习在大规模用户设施中启用高通量和远程操作

Machine learning enabling high-throughput and remote operations at large-scale user facilities

论文作者

Konstantinova, Tatiana, Maffettone, Phillip M., Ravel, Bruce, Campbell, Stuart I., Barbour, Andi M., Olds, Daniel

论文摘要

成像,散射和光谱学是理解和发现新功能材料的基础。当代自动化和实验技术的创新导致这些测量的执行速度更快,分辨率更高,从而产生了大量数据进行分析。这些创新在用户设施和Synchrotron Light源中特别明显。定期开发机器学习(ML)方法来实时处理和通过测量实时解释大型数据集。但是,设施一般用户社区的进入仍然存在概念障碍,这些障碍通常缺乏ML的专业知识,并且用于部署ML模型的技术障碍。本文中,我们展示了在国家同步器光源II(NSLS-II)的多种光束线上在多个梁线上进行直播分析的各种原型ML模型。我们指导地描述了这些示例,重点是将模型集成到现有的实验工作流程中,以便读者可以轻松地将自己的ML技术包括在NSLS-II的实验中,或具有通用基础架构的设施。这里介绍的框架表明,几乎没有努力,不同的ML模型与反馈循环通过集成到现有的Bluesky Suite进行实验编排和数据管理。

Imaging, scattering, and spectroscopy are fundamental in understanding and discovering new functional materials. Contemporary innovations in automation and experimental techniques have led to these measurements being performed much faster and with higher resolution, thus producing vast amounts of data for analysis. These innovations are particularly pronounced at user facilities and synchrotron light sources. Machine learning (ML) methods are regularly developed to process and interpret large datasets in real-time with measurements. However, there remain conceptual barriers to entry for the facility general user community, whom often lack expertise in ML, and technical barriers for deploying ML models. Herein, we demonstrate a variety of archetypal ML models for on-the-fly analysis at multiple beamlines at the National Synchrotron Light Source II (NSLS-II). We describe these examples instructively, with a focus on integrating the models into existing experimental workflows, such that the reader can easily include their own ML techniques into experiments at NSLS-II or facilities with a common infrastructure. The framework presented here shows how with little effort, diverse ML models operate in conjunction with feedback loops via integration into the existing Bluesky Suite for experimental orchestration and data management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源