论文标题

Adatoms在高电场下金属表面上自扩散的极化特征

Polarization characteristics of adatoms self-diffusing on metal surfaces under high electric fields

论文作者

Baibuz, Ekaterina, Kyritsakis, Andreas, Jansson, Ville, Djurabekova, Flyura

论文摘要

尽管自1970年代以来,在理论上和实验中研究了金属表面上的原子扩散,但其准确和定量的理论描述仍然是一个重大挑战。在我们以前的工作中,我们开发了一个理论框架,该框架描述了在有电场的存在下,在有动物的局部极化特征的情况下,在移动原子附近的局部极化特性方面描述了金属表面的原子动力学。在这里,我们对该框架的基础物理学进行了更深入的分析,并严格地定义了在金属表面上移动原子的有效极化特性(永久性偶极矩$μ$和极化性$α$)的概念,这些原子被证明是通过合并的动态的相关原子数量,这些原子数量确定了迁移的动力学。我们使用密度功能理论(DFT)来计算$μ$和$α$ w adatom在W {110}表面上移动的$α$,在其附近存在附加的adatoms。我们分析了$μ$和$α$的依赖性,因此分析了adatom局部原子环境(LAE)下电场下的迁移屏障。我们发现,在我们研究的有限情况下,LAE会显着影响移动原子的$ $ $和$α$,这意味着需要进一步的系统DFT计算,以完全参数化表面扩散的长期大规模模拟的能屏障,例如我们最近开发的大型蒙特·蒙特·蒙特·蒙特·蒙特(Reasten)在电场下的表面扩散模型。

Although atomic diffusion on metal surfaces under high electric fields has been studied theoretically and experimentally since the 1970s, its accurate and quantitative theoretical description remains a significant challenge. In our previous work, we developed a theoretical framework that describes the atomic dynamics on metal surfaces in the presence of an electric field in terms of the local polarization characteristics of the surface at the vicinity of a moving atom. Here, we give a deeper analysis of the physics underlying this framework, introducing and rigorously defining the concept of the effective polarization characteristics (permanent dipole moment $μ$ and polarizability $α$) of a moving atom on a metal surface, which are shown to be the relevant atomic quantities determining the dynamics of a moving atom via a compact equation. We use density functional theory (DFT) to calculate $μ$ and $α$ of a W adatom moving on a W {110} surface, where additional adatoms are present in its vicinity. We analyze the dependence of $μ$ and $α$ and hence the migration barriers under electric fields on the local atomic environments (LAE) of an adatom. We find that the LAE significantly affects $μ$ and $α$ of a moving atom in the limited cases we studied, which implies that further systematic DFT calculations are needed to fully parameterize surface diffusion in terms of energy barriers for long-term large scale simulations, such as our recently developed Kinetic Monte Carlo model for surface diffusion under electric field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源