论文标题

Ablowitz-Ladik晶格的大偏差和Schur流动

Large Deviations for Ablowitz-Ladik lattice, and the Schur flow

论文作者

Mazzuca, Guido, Memin, Ronan

论文摘要

我们考虑了Ablowitz-Ladik晶格的广义Gibbs合奏和Schur流。我们得出了较大的偏差原则,用于分布这些集团的平衡度量的经验度量。结果,我们推断出他们几乎确定的融合。此外,我们能够根据圆形和雅各比β集合的平衡度量来表征它们的极限。

We consider the Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, and the Schur flow. We derive large deviations principles for the distribution of the empirical measures of the equilibrium measures for these ensembles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源