论文标题

在MCU上发现关键字:模拟二进制特征提取和二进制神经网络

Sub-mW Keyword Spotting on an MCU: Analog Binary Feature Extraction and Binary Neural Networks

论文作者

Cerutti, Gianmarco, Cavigelli, Lukas, Andri, Renzo, Magno, Michele, Farella, Elisabetta, Benini, Luca

论文摘要

关键字斑点(KWS)是一个至关重要的功能,可以使周围环境中许多无处不在的智能设备进行交互,要么通过尾流或直接作为人类计算机接口激活它们。对于许多应用程序,KWS是我们与设备交互的切入点,因此是始终在工作负载的过程中。许多智能设备都是移动设备,电池寿命受到连续运行的服务的重大影响。因此,在优化整体功耗时,KW和类似的始终服务是重点。这项工作涉及低成本微控制器单元(MCUS)的KWS能源效率。我们将模拟二元特征提取与二元神经网络相结合。通过用建议的模拟前端代替数字预处理,我们表明数据采集和预处理所需的能量可以减少29倍,从而将其份额从支配的85%减少到我们参考KWS应用程序的总体能源消耗的仅16%。对语音命令数据集的实验评估表明,该系统在10级数据集上分别优于最先进的准确性和能源效率,同时提供了1%和4.3倍,同时提供了令人信服的精度 - 能量能量折衷,包括减少71x能量的2%精度下降。

Keyword spotting (KWS) is a crucial function enabling the interaction with the many ubiquitous smart devices in our surroundings, either activating them through wake-word or directly as a human-computer interface. For many applications, KWS is the entry point for our interactions with the device and, thus, an always-on workload. Many smart devices are mobile and their battery lifetime is heavily impacted by continuously running services. KWS and similar always-on services are thus the focus when optimizing the overall power consumption. This work addresses KWS energy-efficiency on low-cost microcontroller units (MCUs). We combine analog binary feature extraction with binary neural networks. By replacing the digital preprocessing with the proposed analog front-end, we show that the energy required for data acquisition and preprocessing can be reduced by 29x, cutting its share from a dominating 85% to a mere 16% of the overall energy consumption for our reference KWS application. Experimental evaluations on the Speech Commands Dataset show that the proposed system outperforms state-of-the-art accuracy and energy efficiency, respectively, by 1% and 4.3x on a 10-class dataset while providing a compelling accuracy-energy trade-off including a 2% accuracy drop for a 71x energy reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源