论文标题

Neuropack:一种基于python的算法级别的模拟器

NeuroPack: An Algorithm-level Python-based Simulator for Memristor-empowered Neuro-inspired Computing

论文作者

Huang, Jinqi, Stathopoulos, Spyros, Serb, Alex, Prodromakis, Themis

论文摘要

在过去的十年中,新兴的两个终端纳米级记忆设备(称为备忘录)具有实施能节能神经启发的计算体系结构的巨大潜力。结果,已经开发了广泛的技术,即通过不同的经验模型来描述。这种多样性的技术需要建立多功能工具,使设计人员能够在新型神经启发的拓扑中翻译回忆录的属性。在本文中,我们提出了Neuropack,这是一种基于Python的模块化算法级别的仿真平台,可以支持对Memristor神经启发的架构进行研究,以执行在线学习或离线分类。 Neuropack环境设计的多功能性是中心的,使用户可以从各种神经元模型,学习规则和Memristors模型中选择。它的层次结构赋予了Neuropack,以预测各种设计决策和用户参数选项上的任何回忆录状态变化以及相应的神经网络行为。本文通过使用MNIST数据集执行手写数字分类的应用程序示例,并为MENIST数据集和现有的金属氧化物Memristors进行手写数字分类。

Emerging two terminal nanoscale memory devices, known as memristors, have over the past decade demonstrated great potential for implementing energy efficient neuro-inspired computing architectures. As a result, a wide-range of technologies have been developed that in turn are described via distinct empirical models. This diversity of technologies requires the establishment of versatile tools that can enable designers to translate memristors' attributes in novel neuro-inspired topologies. In this paper, we present NeuroPack, a modular, algorithm level Python-based simulation platform that can support studies of memristor neuro-inspired architectures for performing online learning or offline classification. The NeuroPack environment is designed with versatility being central, allowing the user to chose from a variety of neuron models, learning rules and memristors models. Its hierarchical structure, empowers NeuroPack to predict any memristor state changes and the corresponding neural network behavior across a variety of design decisions and user parameters options. The use of NeuroPack is demonstrated herein via an application example of performing handwritten digit classification with the MNIST dataset and an existing empirical model for metal-oxide memristors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源