论文标题
$ b^2 $至$ b $ - 线性的磁磁性由于阻碍轨道运动
$B^2$ to $B$-linear magnetoresistance due to impeded orbital motion
论文作者
论文摘要
奇怪的金属表现出各种异常的磁转运特性,其中最引人注目的是电阻率,它在宽温度和场范围内随磁场$ b $线性增加。这种行为在各种相关金属中的无处不在,无论是单带和多带,具有主导的自旋和/或电荷波动,具有不同水平的混乱或不均匀性水平,并且与量子关键点或相位接近近似 - 迫使搜索基本的基本原则,该原则与任何材料独立于任何材料的基本原则。强烈的各向异性(依赖动量)散射可以产生$ b $ - 线性的磁势,但仅在中间场强度下。在足够高的场上,磁势最终必须饱和。在这里,我们考虑了这种各向异性的最终极限,费米表面上阻碍所有轨道(回旋子)运动的区域或区域的最终极限,但仍可以通过修改的Boltzmann理论处理来对其进行建模。所提出的定理的应用表明,二次到线性磁场的实现需要在费米表面上存在一个有界的扇形,可能会将两种不同类型的载体分开。尽管这个有限的部门可能具有不同的起源或表现形式,但我们希望其存在能够解释各种相关材料中发现的异常磁转运。
Strange metals exhibit a variety of anomalous magnetotransport properties, the most striking of which is a resistivity that increases linearly with magnetic field $B$ over a broad temperature and field range. The ubiquity of this behavior across a spectrum of correlated metals - both single- and multi-band, with either dominant spin and/or charge fluctuations, of varying levels of disorder or inhomogeneity and in proximity to a quantum critical point or phase - obligates the search for a fundamental underlying principle that is independent of the specifics of any material. Strongly anisotropic (momentum-dependent) scattering can generate $B$-linear magnetoresistance but only at intermediate field strengths. At high enough fields, the magnetoresistance must eventually saturate. Here, we consider the ultimate limit of such anisotropy, a region or regions on the Fermi surface that impede all orbital (cyclotron) motion through them, but whose imposition can be modelled nonetheless through a modified Boltzmann theoretical treatment. Application of the proposed theorem suggests that the realization of quadratic-to-linear magnetoresistance requires the presence of a bounded sector on the Fermi surface possibly separating two distinct types of carriers. While this bounded sector may have different origins or manifestations, we expect its existence to account for the anomalous magnetotransport found in a wide range of correlated materials.