论文标题
电磁通量对Chialvo神经元图的动态效应:节点和网络行为
Dynamical effects of electromagnetic flux on Chialvo neuron map: nodal and network behaviors
论文作者
论文摘要
我们考虑电磁通量对离散chialvo神经元的动力学作用。结果表明,该模型可以表现出丰富的动力学行为,例如多稳定性,射击模式,抗巨孔性,封闭的不变曲线,各种混乱的途径,手指混乱的吸引者。该系统通过周期加倍的级联,反向时期途径,抗巨孔性进入混乱,通过封闭的不变曲线与混乱。使用分叉图,Lyapunov指数图,相位肖像,吸引力盆地和分叉的数值延续的技术证实了结果。通过数值延续,不同的全局分叉也显示出存在。在了解单个神经元模型之后,探索了Chialvo神经元网络。考虑了Chialvo神经元的环形明星网络,并揭示了不同的动力学状态,例如同步,异步,嵌合体状态。在模拟过程中,还发现了不同的连续和分段连续波动模式,以确保负耦合强度。
We consider the dynamical effects of electromagnetic flux on the discrete Chialvo neuron. It is shown that the model can exhibit rich dynamical behaviors such as multistability, firing patterns, antimonotonicity, closed invariant curves, various routes to chaos, fingered chaotic attractors. The system enters chaos via period-doubling cascades, reverse period-doubling route, antimonotonicity, via closed invariant curve to chaos. The results were confirmed using the techniques of bifurcation diagrams, Lyapunov exponent diagram, phase portraits, basins of attraction and numerical continuation of bifurcations. Different global bifurcations are also shown to exist via numerical continuation. After understanding a single neuron model, a network of Chialvo neuron is explored. A ring-star network of Chialvo neuron is considered and different dynamical regimes such as synchronous, asynchronous, chimera states are revealed. Different continuous and piecewise continuous wavy patterns were also found during the simulations for negative coupling strengths.