论文标题

无监督人员重新识别的多层次关注

Multi-Level Attention for Unsupervised Person Re-Identification

论文作者

Zheng, Yi

论文摘要

注意机制在深度学习中广泛使用,因为它在神经网络中的出色表现而没有引入其他信息。但是,在无监督的人的重新识别中,由多头自我发场代表的注意模块在非地面真理的条件下遭受了关注。为了解决这个问题,我们设计了像素级的注意模块,以提供多头自我注意的限制。同时,对于人重新识别数据的识别目标都是样本中的行人,我们设计了域级的注意模块以提供更全面的行人特征。我们结合了头部级,像素级和域级的关注,以提出多层次的注意力块,并验证大人重新识别数据集(Market-1501,Dukemtmc-Reid,MSMT17和MSMT17和Personx)的性能。

The attention mechanism is widely used in deep learning because of its excellent performance in neural networks without introducing additional information. However, in unsupervised person re-identification, the attention module represented by multi-headed self-attention suffers from attention spreading in the condition of non-ground truth. To solve this problem, we design pixel-level attention module to provide constraints for multi-headed self-attention. Meanwhile, for the trait that the identification targets of person re-identification data are all pedestrians in the samples, we design domain-level attention module to provide more comprehensive pedestrian features. We combine head-level, pixel-level and domain-level attention to propose multi-level attention block and validate its performance on for large person re-identification datasets (Market-1501, DukeMTMC-reID and MSMT17 and PersonX).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源