论文标题

高阶动态模式分解:从流体动力学到心脏病分析

Higher Order Dynamic Mode Decomposition: from Fluid Dynamics to Heart Disease Analysis

论文作者

Groun, Nourelhouda, Villalba-Orero, Maria, Lara-Pezzi, Enrique, Valero, Eusebio, Garicano-Mena, Jesus, Clainche, Soledad Le

论文摘要

在这项工作中,我们详细研究将高阶动态模式分解(HODMD)技术的性能应用于超声心动图像。 HODMD是一种数据驱动的方法,通常用于流体动力学和对复杂的非线性动力学系统进行分析,对几种复杂的工业应用进行建模。在本文中,我们首次将HODMD应用于作者知识,以识别超声心动图中的模式识别,特别是在健康状况或受到不同心脏疾病折磨的几只小鼠中获取的超声心动图数据。我们利用动态识别和噪声清洁中的HODMD优势性能来确定每种疾病的相关频率和相干模式。超声心动图数据集由相对于长轴视图(LAX)和一个短轴视图(SAX)组成,其中每个视频循环覆盖至少三个心脏周期,由(最多)300帧形成(称为快照)。所提出的算法仅使用200个快照的最大数量,能够捕获两个频率分支,代表心率和呼吸率。此外,该算法提供了许多模式,这些模式代表了不同超声心动图图像中的主要特征和模式,这也与心脏和肺有关。分析了六个数据集:从健康受试者中拍摄的一项超声心动图,并从患有糖尿病心肌病,肥胖,SFSR4肥大,TAC肥大或心肌梗塞的受试者中取出五组超声心动图。结果表明,HODMD是强大的,并且是一个合适的工具,可以识别能够对所研究的不同病理进行分类的特征模式。

In this work, we study in detail the performance of Higher Order Dynamic Mode Decomposition (HODMD) technique when applied to echocardiography images. HODMD is a data-driven method generally used in fluid dynamics and in the analysis of complex non-linear dynamical systems modeling several complex industrial applications. In this paper we apply HODMD, for the first time to the authors knowledge, for patterns recognition in echocardiography, specifically, echocardiography data taken from several mice, either in healthy conditions or afflicted by different cardiac diseases. We exploit the HODMD advantageous properties in dynamics identification and noise cleaning to identify the relevant frequencies and coherent patterns for each one of the diseases. The echocardiography datasets consist of video loops taken with respect to a long axis view (LAX) and a short axis view (SAX), where each video loop covers at least three cardiac cycles, formed by (at most) 300 frames each (called snapshots). The proposed algorithm, using only a maximum quantity of 200 snapshots, was able to capture two branches of frequencies, representing the heart rate and respiratory rate. Additionally, the algorithm provided a number of modes, which represent the dominant features and patterns in the different echocardiography images, also related to the heart and the lung. Six datasets were analyzed: one echocardiography taken from a healthy subject and five different sets of echocardiography taken from subjects with either Diabetic Cardiomyopathy, Obesity, SFSR4 Hypertrophy, TAC Hypertrophy or Myocardial Infarction. The results show that HODMD is robust and a suitable tool to identify characteristic patterns able to classify the different pathologies studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源