论文标题
bethe在量子计算机上的状态:成功概率和相关功能
Bethe states on a quantum computer: success probability and correlation functions
论文作者
论文摘要
最近发现了一种用于制备Spin-1/2 Heisenberg Spin链的伯特本征链的概率算法。我们根据gaudin的决定因素得出了该算法成功概率的确切公式,并研究了其大长度极限。我们证明了计算较短链的抗铁磁地面旋转旋转相关函数的可行性。但是,成功概率随链长度呈指数降低,这排除了这些相关函数的计算中等长度的链。附录中指出了一些估计值估计的猜测。
A probabilistic algorithm for preparing Bethe eigenstates of the spin-1/2 Heisenberg spin chain on a quantum computer has recently been found. We derive an exact formula for the success probability of this algorithm in terms of the Gaudin determinant, and we study its large-length limit. We demonstrate the feasibility of computing antiferromagnetic ground-state spin-spin correlation functions for short chains. However, the success probability decreases exponentially with the chain length, which precludes the computation of these correlation functions for chains of moderate length. Some conjectures for estimates of the Gaudin determinant are noted in an appendix.