论文标题

关于冰根体系的结构和长期演变

On the structure and long-term evolution of ice-rich bodies

论文作者

Loveless, Stephan, Prialnik, Dina, Podolak, Morris

论文摘要

由于发现了Kuiper带对象和系外行星,人们对富含冰块的行星体的结构,尤其是冰和岩石之间的差异。因此,我们对一系列行星质量$ m $进行了一项参数研究,产生了Radii $ 50 \ aplt r \ aplt 3000 $〜km,以及0.25至4之间的岩石/冰质量比,在寒冷的环境中以4.5〜Gyr的速度在寒冷的环境中以4.5 〜Gyr的形式发展。我们使用一个热进化模型,该模型允许在多孔介质中进行液体和蒸气流,从而在静水平衡下解决质量和能量保守方程,以适用于围绕中心恒星的轨道体的球形体。该模型包括压力对孔隙率和熔化温度,长期放射性同位素加热以及温度依赖性蛇丁式化和脱水的影响。我们在分化,形成岩石芯的体之间获得了参数空间的边界[尺寸,岩石含量],以及那些保持未分化的核心:小体,岩石含量低的物体以及所考虑的最大物体,这些物体会产生高内部压力并且几乎无法达到熔化的温度。最终的分化结构包括一个岩石芯,冰块丰富的地幔和表面下方的薄密集地壳。我们获得并讨论了散装密度 - 拉迪乌斯的关系。研究了一个非常寒冷的环境的效果,我们发现在$ \ sim $ 20〜K的环境温度下,小身体以无定形形式保留冰。

The interest in the structure of ice-rich planetary bodies, in particular the differentiation between ice and rock, has grown due to the discovery of Kuiper belt objects and exoplanets. We thus carry out a parameter study for a range of planetary masses $M$, yielding radii $50 \aplt R \aplt 3000$~km, and for rock/ice mass ratios between 0.25 and 4, evolving them for 4.5~Gyr in a cold environment, to obtain the present structure. We use a thermal evolution model that allows for liquid and vapor flow in a porous medium, solving mass and energy conservation equations under hydrostatic equilibrium for a spherical body in orbit around a central star. The model includes the effect of pressure on porosity and on the melting temperature, heating by long-lived radioactive isotopes, and temperature-dependent serpentinization and dehydration. We obtain the boundary in parameter space [size, rock-content] between bodies that differentiate, forming a rocky core, and those which remain undifferentiated: small bodies, bodies with a low rock content, and the largest bodies considered, which develop high internal pressures and barely attain the melting temperature. The final differentiated structure comprises a rocky core, an ice-rich mantle, and a thin dense crust below the surface. We obtain and discuss the bulk density-radius relationship. The effect of a very cold environment is investigated and we find that at an ambient temperature of $\sim$20~K, small bodies preserve the ice in amorphous form to the present.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源