论文标题

gorenstein在刺穿光谱上的gorenstein和几乎是gorenstein的特性

Gorenstein on the punctured spectrum and nearly Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph

论文作者

Miyazaki, Mitsuhiro

论文摘要

在本文中,我们给出了H-Perfect图的Ehrhart环的几乎Gorenstein属性的标准:H-Perfect Graph $ g $的稳定集合的Ehrhart环,带有连接的组件$ G^{(1)},\ ldots,g^^^$ g^^^^^^^^^^^((iS) (1)对于每个$ i $,$ g^{(i)} $的稳定套件的ehrhart环为gorenstein和(2)$ |ω(g^{(i)}) - ω(g^{(j)}) $ g^{(i)} $。 我们还表明,Cohen-Macaulay的Segre乘积是带线性非式偏射剂的分级环,如果在穿刺频谱上是Gorenstein,则在刺穿的光谱上也是戈伦斯坦(Gorenstein),如果除了一个环是标准级别的所有环。

In this paper, we give a criterion of the nearly Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph: the Ehrhart ring of the stable set polytope of an h-perfect graph $G$ with connected components $G^{(1)}, \ldots, G^{(\ell)}$ is nearly Gorenstein if and only if (1) for each $i$, the Ehrhart ring of the stable set polytope of $G^{(i)}$ is Gorenstein and (2) $|ω(G^{(i)})-ω(G^{(j)})|\leq 1$ for any $i$ and $j$, where $ω(G^{(i)})$ is the clique number of $G^{(i)}$. We also show that the Segre product of Cohen-Macaulay graded rings with linear non-zerodivisor which are Gorenstein on the punctured spectrum is also Gorenstein on the punctured spectrum if all but one rings are standard graded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源