论文标题
使用编码和封装特征的视频源表征
Video Source Characterization Using Encoding and Encapsulation Characteristics
论文作者
论文摘要
我们介绍了一种用于摄像机模型识别的新方法。我们的方法结合了与视频编码和媒体数据封装相对应的视频文件生成的两个独立方面。为此,开发了整体文件元数据的联合表示,并与两级分层分类方法一起使用。在第一层,我们的方法将视频分组为元类,考虑了几个代表文件元数据的高级结构属性的抽象。接下来是组成每个元类的类的更细微的分类。通过组合四个公共视频数据集获得的超过20K视频评估该方法。测试表明,在正确识别119个视频课程中的视频类别时,可以达到91%的平衡精度。这对应于基于视频文件封装特征的传统方法比传统方法的改善。此外,我们研究了与法医文件恢复操作相关的设置,该设置无法找到或丢失文件元数据,但视频数据部分可用。通过从编码视频数据中估算编码参数的部分列表,我们证明,在没有任何其他文件元数据的情况下,在摄像机模型识别中可以达到57%的识别精度。
We introduce a new method for camera-model identification. Our approach combines two independent aspects of video file generation corresponding to video coding and media data encapsulation. To this end, a joint representation of the overall file metadata is developed and used in conjunction with a two-level hierarchical classification method. At the first level, our method groups videos into metaclasses considering several abstractions that represent high-level structural properties of file metadata. This is followed by a more nuanced classification of classes that comprise each metaclass. The method is evaluated on more than 20K videos obtained by combining four public video datasets. Tests show that a balanced accuracy of 91% is achieved in correctly identifying the class of a video among 119 video classes. This corresponds to an improvement of 6.5% over the conventional approach based on video file encapsulation characteristics. Furthermore, we investigate a setting relevant to forensic file recovery operations where file metadata cannot be located or are missing but video data is partially available. By estimating a partial list of encoding parameters from coded video data, we demonstrate that an identification accuracy of 57% can be achieved in camera-model identification in the absence of any other file metadata.