论文标题
金属氧化物光催化剂中的电子缺陷
Electronic Defects in Metal Oxide Photocatalysts
论文作者
论文摘要
对缺陷的深刻理解对于优化太阳能转化材料至关重要。对于金属氧化物照片(Electro)催化剂而言,尤其如此,通常具有电子活动性的高浓度带电点缺陷。在光伏材料中,除了选定的掺杂剂外,缺陷被认为是有害的,应消除以最大程度地减少电荷重组。然而,光催化是一个更复杂的过程,其中缺陷可以通过稳定电荷分离和介导限速催化步骤发挥活性作用。在这里,我们回顾了金属氧化物中电子缺陷的行为,特别注意以极性子形式的被困电荷的形成和功能的原理。我们关注缺陷如何在照明时静态或瞬时改变电子结构,并讨论此类变化在光驱动催化反应中的含义。最后,我们考虑了基于氮,聚合物和金属卤化物钙钛矿,从氧化物缺陷化学中学到的经验教训的适用性。
A deep understanding of defects is essential for the optimisation of materials for solar energy conversion. This is particularly true for metal oxide photo(electro)catalysts, which typically feature high concentrations of charged point defects that are electronically active. In photovoltaic materials, except for selected dopants, defects are considered detrimental and should be eliminated to minimise charge recombination. However, photocatalysis is a more complex process where defects can play an active role, for example, by stabilising charge separation and mediating rate-limiting catalytic steps. Here, we review the behaviour of electronic defects in metal oxides, paying special attention to the principles underpinning the formation and function of trapped charges in the form of polarons. We focus on how defects alter the electronic structure, statically or transiently upon illumination, and discuss the implications of such changes in light-driven catalytic reactions. Finally, we consider the applicability of lessons learned from oxide defect chemistry to new photocatalysts based on carbon nitrides, polymers and metal halide perovskites.