论文标题
在Schrödinger-type操作员的光谱上
On the spectrum of Schrödinger-type operators on two dimensional lattices
论文作者
论文摘要
我们考虑一个家庭$$ \ widehat h_ {a,b}(μ)= \ widehat h_0 +μ\ widehat v_ {a,b} \quadμ> 0,schrödinger-type操作员在二维的lattice $ \ mathbb {z} $ {z} $ \ y $ \ s $ \ s $ \ s $ \ s $ \ y $ Laurent-toeplitz-type卷积操作员,带有给定的跳跃矩阵$ \ hat {e} $和$ \ wideHat v_ {a,b} $仅考虑到零范围和单范围的交互,即乘以零范围的交互,即,乘以函数$ \ hat $ \ hat $ \ hat $ \ hat $ \ hat $ \ hat $ \ hat $ \ hat $ \ f($ \ hat) $ | x | = 1 $和$ \ hat v(x)= 0 $ for $ | x | \ ge2,$ a,$ a,b \ in \ mathbb {r} \ setMinus \ {0 \}。并研究特征值对参数的依赖性$μ,$ a $ and $ b。$此外,我们表征了阈值特征函数和共振。
We consider a family $$ \widehat H_{a,b}(μ)=\widehat H_0 +μ\widehat V_{a,b}\quad μ>0, $$ of Schrödinger-type operators on the two dimensional lattice $\mathbb{Z}^2,$ where $\widehat H_0$ is a Laurent-Toeplitz-type convolution operator with a given Hopping matrix $\hat{e}$ and $\widehat V_{a,b}$ is a potential taking into account only the zero-range and one-range interactions, i.e., a multiplication operator by a function $\hat v$ such that $\hat v(0)=a,$ $\hat v(x)=b$ for $|x|=1$ and $\hat v(x)=0$ for $|x|\ge2,$ where $a,b\in\mathbb{R}\setminus\{0\}.$ Under certain conditions on the regularity of $\hat{e}$ we completely describe the discrete spectrum of $\hat H_{a,b}(μ)$ lying above the essential spectrum and study the dependence of eigenvalues on parameters $μ,$ $a$ and $b.$ Moreover, we characterize the threshold eigenfunctions and resonances.