论文标题
对自动化医学编码的深度学习的统一评论
A Unified Review of Deep Learning for Automated Medical Coding
论文作者
论文摘要
自动化医疗编码是医疗保健操作和交付的重要任务,可以通过预测临床文档的医疗代码来管理非结构化数据。深度学习和自然语言处理的最新进展已被广泛应用于这项任务。但是,基于深度学习的医学编码缺乏对神经网络架构设计的统一视图。这篇综述提出了一个统一的框架,以提供对医疗编码模型的构件的一般理解,并总结了拟议框架下的最新高级模型。我们的统一框架将医疗编码分解为四个主要组件,即用于文本特征提取的编码模块,用于构建深层编码器体系结构的机制,用于将隐藏表示形式转换为医疗代码的解码器模块以及辅助信息的使用。最后,我们介绍了基准和现实世界的用法,并讨论了关键的研究挑战和未来的方向。
Automated medical coding, an essential task for healthcare operation and delivery, makes unstructured data manageable by predicting medical codes from clinical documents. Recent advances in deep learning and natural language processing have been widely applied to this task. However, deep learning-based medical coding lacks a unified view of the design of neural network architectures. This review proposes a unified framework to provide a general understanding of the building blocks of medical coding models and summarizes recent advanced models under the proposed framework. Our unified framework decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, mechanisms for building deep encoder architectures, decoder modules for transforming hidden representations into medical codes, and the usage of auxiliary information. Finally, we introduce the benchmarks and real-world usage and discuss key research challenges and future directions.