论文标题
C2-CRS:对会话推荐系统的粗到细节学习
C2-CRS: Coarse-to-Fine Contrastive Learning for Conversational Recommender System
论文作者
论文摘要
会话推荐系统(CRS)旨在通过自然语言对话向用户推荐合适的物品。对于开发有效的CRS,一个主要的技术问题是如何从非常有限的对话环境中准确推断用户偏好。为了解决问题,一个有希望的解决方案是合并外部数据以丰富上下文信息。但是,先前的研究主要集中于设计针对某些特定类型的外部数据量身定制的融合模型,这并不是一般建模和使用多类型外部数据。 为了有效利用多类型外部数据,我们提出了一个新颖的粗到细节对比学习框架,以改善CRS的数据语义融合。在我们的方法中,我们首先从不同的数据信号中提取并表示多层次的语义单元,然后以粗略的方式对齐相关的多类语义单元。为了实现此框架,我们设计了粗粒和细粒度的过程来建模用户的偏好,其中前者专注于更一般的粗粒语义融合,后者专注于更具体的,细粒度的语义融合。可以扩展这种方法以结合更多的外部数据。在两个公共CRS数据集上进行了广泛的实验,已经证明了我们在建议和对话任务中的有效性。
Conversational recommender systems (CRS) aim to recommend suitable items to users through natural language conversations. For developing effective CRSs, a major technical issue is how to accurately infer user preference from very limited conversation context. To address issue, a promising solution is to incorporate external data for enriching the context information. However, prior studies mainly focus on designing fusion models tailored for some specific type of external data, which is not general to model and utilize multi-type external data. To effectively leverage multi-type external data, we propose a novel coarse-to-fine contrastive learning framework to improve data semantic fusion for CRS. In our approach, we first extract and represent multi-grained semantic units from different data signals, and then align the associated multi-type semantic units in a coarse-to-fine way. To implement this framework, we design both coarse-grained and fine-grained procedures for modeling user preference, where the former focuses on more general, coarse-grained semantic fusion and the latter focuses on more specific, fine-grained semantic fusion. Such an approach can be extended to incorporate more kinds of external data. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach in both recommendation and conversation tasks.