论文标题

QFT纠缠熵,2D费米昂和量规场

QFT Entanglement Entropy, 2D Fermion and Gauge Fields

论文作者

Kim, Bom Soo

论文摘要

在存在化学势,当前来源和拓扑的Wilson Loop的情况下,在一个框架中统一了在具有化学势,当前来源和拓扑的Wilson Loop的情况下,在2维圆环上的纠缠和Rényi熵,通过耗尽了$ \ Mathbb {Z} _N $ ORBIFOLD GURENFORMAL CONFORMAL FIELD的所有电磁顶点操作员的所有成分。在纠缠熵的背景下,我们对不同的拓扑部门采用不同的归一化来组织各种拓扑相变。为$ n = 2 $rényi熵提供了拓扑过渡的图形表示。 我们的分析计算揭示了许多新颖性,并为现有问题提供了决议。我们已经定居是为了提供在拓扑领域也连续连续的非单一纠缠熵。令人惊讶的是,在无限的空间中,这些熵变得精确,仅取决于威尔逊循环。在一个圆圈上,我们决心找到熵巧妙地取决于零温度下的化学电位,这对于探测量子系统的基态能水平很有用。

Entanglement and the Rényi entropies for Dirac fermions on 2 dimensional torus in the presence of chemical potential, current source, and topological Wilson loop are unified in a single framework by exhausting all the ingredients of the electromagnetic vertex operators of $\mathbb{Z}_n$ orbifold conformal field theory. We employ different normalizations for different topological sectors to organize various topological phase transitions in the context of entanglement entropy. Pictorial representations for the topological transitions are given for the $n=2$ Rényi entropy. Our analytic computations reveal numerous novelties and provide resolutions for existing issues. We have settled to provide non-singular entanglement entropies that are also continuous across the topological sectors. Surprisingly, in infinite space, these entropies become exact and depend only on the Wilson loop. On a circle, we resolve to find the entropies subtly depend on the chemical potential at zero temperature, which is useful for probing the ground state energy levels of quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源