论文标题

具有Pöschl-Teller和Square势井的非线性Schrödinger方程的结合状态光谱

Bound states spectrum of the nonlinear Schrödinger equation with Pöschl-Teller and square potential wells

论文作者

Sakkaf, L. Al, Khawaja, U. Al

论文摘要

我们在非线性Schrödinger方程中获得了修改的PöschlTeller和平方电位井的结合状态光谱。对于固定状态的固定标准,两个电势的光谱都由有限数量的多节点局部状态组成。我们使用模量不稳定性分析来得出根据电位宽度来提供可能的局部状态数量和最大节点数量的关系。这两个电势的孤子散射证实了形成为被困模式的局部状态的存在。使用被困模式的能量计算量子反射的临界速度。

We obtain the spectrum of bound states for a modified Pöschl-Teller and square potential wells in the nonlinear Schrödinger equation. For a fixed norm of bound states, the spectrum for both potentials turns out to consist of a finite number of multi-node localized states. We use modulational instability analysis to derive the relation that gives the number of possible localized states and the maximum number of nodes in terms of the width of the potential. Soliton scattering by these two potentials confirmed the existence of the localized states which form as trapped modes. Critical speed for quantum reflection was calculated using the energies of the trapped modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源