论文标题

检测可以通过信号聚类相似性来化装攻击

Detecting CAN Masquerade Attacks with Signal Clustering Similarity

论文作者

Moriano, Pablo, Bridges, Robert A., Iannacone, Michael D.

论文摘要

车辆控制器区域网络(罐)容易受到不同水平的网络攻击。制造攻击是最容易管理的 - 对手只是在罐子上发送(额外的)帧 - 但也最容易检测到,因为它们破坏了框架频率。为了克服基于时间的检测方法,对手必须通过发送框架来代替(因此是在预期的)良性框架但具有恶意有效载荷来管理化妆式攻击。研究工作已经证明可以攻击,尤其是化妆攻击会影响车辆功能。例子包括引起意外加速,车辆刹车停用以及操纵车辆。我们假设化装攻击改变了CAN信号时间序列的细微相关性以及它们如何聚集在一起。因此,群集分配的变化应表明异常行为。我们通过利用我们先前开发的逆向工程能力来确认这一假设,即CAN-D [Contry-d [控制器区域网络解码器]),并专注于通过分析从RAW CAN FIFEMS提取的分析提取的时间序列来推进艺术状况来检测化妆式攻击。具体而言,我们证明了可以通过使用车辆CAN上的层次聚类来计算时间序列相似性来检测化装攻击,并在没有攻击的情况下捕获的范围内的群集相似性可以捕获群的相似性。我们在先前收集的CAN数据集中测试我们的方法,并使用化妆舞会攻击(即道路数据集)测试我们的方法,并开发法医工具作为概念证明,以证明拟议的检测方法的潜力可以化妆攻击。

Vehicular Controller Area Networks (CANs) are susceptible to cyber attacks of different levels of sophistication. Fabrication attacks are the easiest to administer -- an adversary simply sends (extra) frames on a CAN -- but also the easiest to detect because they disrupt frame frequency. To overcome time-based detection methods, adversaries must administer masquerade attacks by sending frames in lieu of (and therefore at the expected time of) benign frames but with malicious payloads. Research efforts have proven that CAN attacks, and masquerade attacks in particular, can affect vehicle functionality. Examples include causing unintended acceleration, deactivation of vehicle's brakes, as well as steering the vehicle. We hypothesize that masquerade attacks modify the nuanced correlations of CAN signal time series and how they cluster together. Therefore, changes in cluster assignments should indicate anomalous behavior. We confirm this hypothesis by leveraging our previously developed capability for reverse engineering CAN signals (i.e., CAN-D [Controller Area Network Decoder]) and focus on advancing the state of the art for detecting masquerade attacks by analyzing time series extracted from raw CAN frames. Specifically, we demonstrate that masquerade attacks can be detected by computing time series clustering similarity using hierarchical clustering on the vehicle's CAN signals (time series) and comparing the clustering similarity across CAN captures with and without attacks. We test our approach in a previously collected CAN dataset with masquerade attacks (i.e., the ROAD dataset) and develop a forensic tool as a proof of concept to demonstrate the potential of the proposed approach for detecting CAN masquerade attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源