论文标题

麦克斯韦方程有阻抗边界条件的波数阐释的HP-FEM分析

Wavenumber-explicit hp-FEM analysis for Maxwell's equations with impedance boundary conditions

论文作者

Melenk, Jens M., Sauter, Stefan A.

论文摘要

考虑到具有分析边界和阻抗边界条件的域中高波数k处的时谐麦克斯韦方程。开发了波数阐明稳定性和规律性理论,该理论将解决方案分解为有限的Sobolev规则性,该溶液在K和分析部分中均匀控制。使用这种规律性,在k-阐明量表分辨率的条件下显示了基于per p p的NEDELEC元素的Galerkin离散化的准选项,即A)Kh/p足够小,b)p/\ ln k从下面界定。

The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nedelec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that a) kh/p is sufficient small and b) p/\ln k is bounded from below.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源