论文标题
可以解释厄尔尼诺和河流中的见解的深度学习
Explainable deep learning for insights in El Niño and river flows
论文作者
论文摘要
厄尔尼诺南部振荡(ENSO)是在热带中部和东太平洋的海面温度(SST)中的半周期波动,它通过远距离依赖或远程连接影响了世界各地水文学的年度变化。最近的研究表明,深度学习(DL)方法的价值(DL)方法改善ENSO预测以及复杂网络(CN),以理解远程连接。然而,对ENSO驱动的河流的预测理解的差距包括DL的黑匣子性质,使用简单的ENSO指数来描述复杂现象,并将基于DL的ENSO预测转化为河流流动预测。在这里,我们表明,基于显着性图的可解释的DL(XDL)方法可以提取全球SST中包含的可解释的预测信息,并发现与河流相关的SST信息区域和依赖性结构,这些信息与气候网络结构同时,可以提高预测性理解。我们的结果揭示了全球SST超出ENSO指数的其他信息内容,对SST如何影响河流的流动发展,并产生改进的河流流量预测,包括不确定性估计。观测,重新分析数据和地球系统模型模拟用于证明基于XDL-CN的未来年际和十年尺度气候预测的基于XDL-CN的价值。
The El Niño Southern Oscillation (ENSO) is a semi-periodic fluctuation in sea surface temperature (SST) over the tropical central and eastern Pacific Ocean that influences interannual variability in regional hydrology across the world through long-range dependence or teleconnections. Recent research has demonstrated the value of Deep Learning (DL) methods for improving ENSO prediction as well as Complex Networks (CN) for understanding teleconnections. However, gaps in predictive understanding of ENSO-driven river flows include the black box nature of DL, the use of simple ENSO indices to describe a complex phenomenon and translating DL-based ENSO predictions to river flow predictions. Here we show that eXplainable DL (XDL) methods, based on saliency maps, can extract interpretable predictive information contained in global SST and discover SST information regions and dependence structures relevant for river flows which, in tandem with climate network constructions, enable improved predictive understanding. Our results reveal additional information content in global SST beyond ENSO indices, develop understanding of how SSTs influence river flows, and generate improved river flow prediction, including uncertainty estimation. Observations, reanalysis data, and earth system model simulations are used to demonstrate the value of the XDL-CN based methods for future interannual and decadal scale climate projections.