论文标题

评估精确物理的多尺度多尺度Feynman积分

Evaluation of multi-loop multi-scale Feynman integrals for precision physics

论文作者

Dubovyk, Ievgen, Freitas, Ayres, Gluza, Janusz, Grzanka, Krzysztof, Hidding, Martijn, Usovitsch, Johann

论文摘要

现代粒子物理学越来越成为一门精确的科学,依靠高级理论预测来分析和解释实验结果。 LHC和未来的对船员的计划中的物理计划将需要三环电动eleteak,以及混合电动QCD校正单粒子生产和衰减过程,以及两环电路校正对配对生产过程,所有这些过程都超出了现有形式的现有分析和数值技术的范围。本文提出了一种基于微分方程的新的半数字方法,其边界项在欧几里得运动点上指定。这些欧几里得边界项可以使用扇形分解或其他数值方法以高精度来计算数值。然后,它们使用微分方程系统的串联解决方案映射到物理运动学配置。该方法能够提供8个或更多位数的精度,并且具有内置机制,可检查获得的结果的准确性。它的功效以三环自能力和顶点积分以及两环盒积分的示例来说明其功效。

Modern particle physics is increasingly becoming a precision science that relies on advanced theoretical predictions for the analysis and interpretation of experimental results. The planned physics program at the LHC and future colliders will require three-loop electroweak and mixed electroweak-QCD corrections to single-particle production and decay processes and two-loop electroweak corrections to pair production processes, all of which are beyond the reach of existing analytical and numerical techniques in their current form. This article presents a new semi-numerical approach based on differential equations with boundary terms specified at Euclidean kinematic points. These Euclidean boundary terms can be computed numerically with high accuracy using sector decomposition or other numerical methods. They are then mapped to the physical kinematic configuration with a series solution of the differential equation system. The method is able to deliver 8 or more digits precision, and it has a built-in mechanism for checking the accuracy of the obtained results. Its efficacy is illustrated with examples for three-loop self-energy and vertex integrals and two-loop box integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源