论文标题
半连接的Li&Yau不平等现象
Semilinear Li & Yau inequalities
论文作者
论文摘要
我们得出了LI&YAU的适应性估计值,用于具有非负ricci张量的Riemannian歧管上半线性热方程的阳性溶液。然后,我们应用这些估计值来获得harnack不平等,并讨论古代和永恒解决方案的单调性,凸度,衰减估计和微不足道。
We derive an adaptation of Li & Yau estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative Ricci tensor. We then apply these estimates to obtain a Harnack inequality and to discuss monotonicity, convexity, decay estimates and triviality of ancient and eternal solutions.