论文标题

概率时间限制下的节能D2D雾计算

Energy-Efficient D2D-Aided Fog Computing under Probabilistic Time Constraints

论文作者

Karatalay, Onur, Psaromiligkos, Ioannis, Champagne, Benoit

论文摘要

设备对设备(D2D)通信是一种通过允许在移动设备之间共享计算资源的促进技术。但是,设备CPU中的温度变化会影响可用于卸载的计算资源,从而无法预测地改变了处理时间和能耗。在本文中,我们解决了有关任务分配,计算资源和传输功率在D2D辅助雾计算方案中的问题的问题,旨在最大程度地减少处理时间上概率约束下预期的总能量消耗。由于公式的问题是非凸面,因此我们提出了两种亚最佳解决方案方法。第一种方法是基于凸(DC)编程的差异,我们将其与Chance-Constraint编程结合使用,以处理概率时间限制。考虑到DC编程取决于一个好的初始点,我们提出了一种仅依赖于凸编程的方法,从而消除了对用户定义的初始化的依赖。仿真结果表明,后一种方法在能效和运行时间方面优于前者。

Device-to-device (D2D) communication is an enabling technology for fog computing by allowing the sharing of computation resources between mobile devices. However, temperature variations in the device CPUs affect the computation resources available for task offloading, which unpredictably alters the processing time and energy consumption. In this paper, we address the problem of resource allocation with respect to task partitioning, computation resources and transmit power in a D2D-aided fog computing scenario, aiming to minimize the expected total energy consumption under probabilistic constraints on the processing time. Since the formulated problem is non-convex, we propose two sub-optimal solution methods. The first method is based on difference of convex (DC) programming, which we combine with chance-constraint programming to handle the probabilistic time limitations. Considering that DC programming is dependent on a good initial point, we propose a second method that relies on only convex programming, which eliminates the dependence on user-defined initialization. Simulation results demonstrate that the latter method outperforms the former in terms of energy efficiency and run-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源