论文标题

使用壳模型进行湍流模拟的自动耗散控制

Automated Dissipation Control for Turbulence Simulation with Shell Models

论文作者

Dombrowski, Ann-Kathrin, Müller, Klaus-Robert, Müller, Wolf Christian

论文摘要

机器学习(ML)技术的应用,尤其是神经网络,在处理图像和语言方面取得了巨大的成功。这是因为我们经常缺乏理解视觉和音频输入的正式模型,因此在这里神经网络可以展开其能力,因为它们只能从数据中进行模型。在物理领域,我们通常有模型在形式上很好地描述自然过程。尽管如此,近年来,ML在这些领域中也已被证明是有用的,无论是通过加快数值模拟还是提高准确性来加快它。古典物理学中的一个重要且尚未解决的问题是了解湍流运动。在这项工作中,我们使用Gledzer-Ohkitani-Yamada(GOY)壳模型构建了湍流的强烈简化表示。使用该系统,我们打算研究ML支持和物理受限的小规模湍流建模的潜力。我们提出了一种旨在重建湍流的统计特性(例如自相似惯性范围)的方法,而不是标准监督学习,我们可以在其中实现令人鼓舞的实验结果。此外,当将机器学习与微分方程相结合时,我们会讨论陷阱。

The application of machine learning (ML) techniques, especially neural networks, has seen tremendous success at processing images and language. This is because we often lack formal models to understand visual and audio input, so here neural networks can unfold their abilities as they can model solely from data. In the field of physics we typically have models that describe natural processes reasonably well on a formal level. Nonetheless, in recent years, ML has also proven useful in these realms, be it by speeding up numerical simulations or by improving accuracy. One important and so far unsolved problem in classical physics is understanding turbulent fluid motion. In this work we construct a strongly simplified representation of turbulence by using the Gledzer-Ohkitani-Yamada (GOY) shell model. With this system we intend to investigate the potential of ML-supported and physics-constrained small-scale turbulence modelling. Instead of standard supervised learning we propose an approach that aims to reconstruct statistical properties of turbulence such as the self-similar inertial-range scaling, where we could achieve encouraging experimental results. Furthermore we discuss pitfalls when combining machine learning with differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源