论文标题

定期驱动的热电热发动机的几何热力学不确定性关系

Geometric thermodynamic uncertainty relation in periodically driven thermoelectric heat engine

论文作者

Lu, Jincheng, Wang, Zi, Peng, Jiebin, Wang, Chen, Jiang, Jian-Hua, Ren, Jie

论文摘要

热力学不确定性关系,量化了平均电流之间的权衡,相关的波动(精度)和熵产生(成本),已在非平衡稳态和各种随机系统中进行了表达。在本文中,我们通过发现基础类似浆果相的贡献来研究在周期性控制方案下,在定期控制方案下的通用热电热发动机中的热力学不确定性关系。我们表明,我们的热力学不确定性关系破坏了源自非呈现几何效应的精确稳态结果。此外,通过得出随之而来的权衡关系结合效率,功率和稳定性,我们证明了定期驱动的热电热发动机通常可以优于稳态类似物。在周期性调制下,通过可分析解决的两端单量子点热发动机来说明了一般边界。我们的工作提供了一个几何框架,以界定和优化广泛的定期驱动的热电热机。

Thermodynamic uncertainty relation, quantifying a trade-off among average current, the associated fluctuation (precision), and entropy production (cost), has been formulated in nonequilibrium steady state and various stochastic systems. Herein, we study the thermodynamic uncertainty relation in generic thermoelectric heat engines under a periodic control protocol, by uncovering the underlying Berry-phase-like contribution. We show that our thermodynamic uncertainty relation breaks the seminal steady-state results, originating from the non-vanishing geometric effect. Furthermore, by deriving the consequent trade-off relation binding efficiency, power, and constancy, we prove that the periodically driven thermoelectric heat engines can generally outperform the steady-state analogies. The general bounds are illustrated by an analytically solvable two-terminal single quantum dot heat engine under the periodic modulation. Our work provides a geometric framework in bounding and optimizing a wide range of periodically driven thermoelectric thermal machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源