论文标题

紧密的细粒度界限可直接访问加入查询

Tight Fine-Grained Bounds for Direct Access on Join Queries

论文作者

Bringmann, Karl, Carmeli, Nofar, Mengel, Stefan

论文摘要

我们考虑词典直接访问查询答案的任务。也就是说,我们要模拟一个数组,其中包含用用户选择的词典顺序排序的JOIN查询的答案。最近的二分法表明,在准线性预处理后,可以在哪些查询和订购此任务中进行此任务,但是该二分法并未告诉我们在被归类为硬的情况下需要多少时间。我们确定为所有联接查询和所有词典订单实现Polyrogarithmic访问时间所需的预处理时间。为此,我们提出了一种基于分解的一般算法,用于直接访问联接查询。然后,我们通过基于某个在线设置 - 偶口问题的硬度证明预处理时间的下限来探索其最佳性,这表明我们算法的界限对于所有词汇量订单都紧密,所有词汇量订单都紧密。然后,我们证明了基于零关键的猜想,这是从细粒度复杂性理论中建立的猜想。有趣的是,在证明我们的下限时,我们表明自加入并不影响直接访问的复杂性(超过对数因素)。我们的算法也可用于解决预测和放松订单要求的查询,尽管在这种情况下,其运行时间不一定是最佳的。我们还表明,与我们的下限中使用的技术相似,可以用来证明,为了列举织机 - 怀特尼(Loomis-Whitney)的答案,在预处理时对所有答案进行微不足道的计算时,不可能显着改善。反过来,这给出了与线性预处理和恒定延迟相对于自加入自由循环联接的枚举硬度的进一步证据(基于零关联的猜想)。

We consider the task of lexicographic direct access to query answers. That is, we want to simulate an array containing the answers of a join query sorted in a lexicographic order chosen by the user. A recent dichotomy showed for which queries and orders this task can be done in polylogarithmic access time after quasilinear preprocessing, but this dichotomy does not tell us how much time is required in the cases classified as hard. We determine the preprocessing time needed to achieve polylogarithmic access time for all join queries and all lexicographical orders. To this end, we propose a decomposition-based general algorithm for direct access on join queries. We then explore its optimality by proving lower bounds for the preprocessing time based on the hardness of a certain online Set-Disjointness problem, which shows that our algorithm's bounds are tight for all lexicographic orders on join queries. Then, we prove the hardness of Set-Disjointness based on the Zero-Clique Conjecture which is an established conjecture from fine-grained complexity theory. Interestingly, while proving our lower bound, we show that self-joins do not affect the complexity of direct access (up to logarithmic factors). Our algorithm can also be used to solve queries with projections and relaxed order requirements, though in these cases, its running time not necessarily optimal. We also show that similar techniques to those used in our lower bounds can be used to prove that, for enumerating answers to Loomis-Whitney joins, it is not possible to significantly improve upon trivially computing all answers at preprocessing. This, in turn, gives further evidence (based on the Zero-Clique Conjecture) to the enumeration hardness of self-join free cyclic joins with respect to linear preprocessing and constant delay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源