论文标题
双曲线空间上的非线性热方程:全球存在和有限的时间爆破
Non-linear heat equation on the Hyperbolic space: Global existence and finite-time Blow-up
论文作者
论文摘要
我们考虑了双曲线空间上半线性热方程的以下库奇问题: \ begin {align} \ label {abs:eqn} \ left \ {\ begin {array} {ll} {ll} \ partial_ {t} u =δ_ {\ mathbb {h} (0,t),\\ \\ \ quad u = u_ {0}&\ hbox {in}〜\ mathbb {h}^{n}^{n} \ times \ times \ {0 \}。 \ end {array} \ right。 \ end {align} 我们研究fujita现象的非负初始数据$ u_0 $属于$ c(\ mathbb {h}^{n})\ cap l^{\ cap l^{\ mathBb {h} $ u中的非线性,$ the power权重$ h(t)= t^q $在非负全球解决方案的某种意义上是较小的初始数据。另一方面,它在指数重量$ h(t)= e^{μt}中表现出Fujita现象。本文的主要目的之一是在$ u $中找到适当的非线性,以便上述cauchy问题与功率重量$ h(t)= t^q $的问题确实表现出Fujita现象。在本文的其余部分中,我们研究了$ u中指数非线性的藤田现象。
We consider the following Cauchy problem for the semi linear heat equation on the hyperbolic space: \begin{align}\label{abs:eqn} \left\{\begin{array}{ll} \partial_{t}u=Δ_{\mathbb{H}^{n}} u+ f(u, t) &\hbox{ in }~ \mathbb{H}^{n}\times (0, T),\\ \\ \quad u =u_{0} &\hbox{ in }~ \mathbb{H}^{n}\times \{0\}. \end{array}\right. \end{align} We study Fujita phenomena for the non-negative initial data $u_0$ belonging to $C(\mathbb{H}^{n}) \cap L^{\infty}(\mathbb{H}^{n})$ and for different choices of $f$ of the form $f(u,t) = h(t)g(u).$ It is well-known that for power nonlinearities in $u,$ the power weight $h(t) = t^q$ is sub-critical in the sense that non-negative global solutions exist for small initial data. On the other hand, it exhibits Fujita phenomena for the exponential weight $h(t) = e^{μt},$ i.e. there exists a critical exponent $μ^*$ such that if $μ> μ^*$ then all non-negative solutions blow-up in finite time and if $μ\leq μ^*$ there exists non-negative global solutions for small initial data. One of the main objectives of this article is to find an appropriate nonlinearity in $u$ so that the above mentioned Cauchy problem with the power weight $h(t) = t^q$ does exhibit Fujita phenomena. In the remaining part of this article, we study Fujita phenomena for exponential nonlinearity in $u.$ We further generalize some of these results to Cartan-Hadamard manifolds.