论文标题

光活性液晶弹性体的温度调节的光机械致动

Temperature-Modulated Photomechanical Actuation of Photoactive Liquid Crystal Elastomers

论文作者

Wei, Zhengxuan, Bai, Ruobing

论文摘要

光活性液体晶体弹性体是嵌入偶氮苯等发色团的液晶中胶的聚合物网络。当通过光化学反应照亮一定波长时,它们会发生大变形,从而激发了令人兴奋的新应用。然而,尽管这些材料的实验和理论最近都取得了进展,但通过各种分子到中尺度过程对温度对其光学启动的影响的基本理解仍然在很大程度上尚未开发。本文通过将不同的温度依赖性过程整合到连续框架中,构建了一个理论模型来研究这种温度调节的光机械驱动。该模型研究了一种特殊的工作条件,其中材料承受单轴拉伸负荷,规定的温度和偏振光照明。我们在各种条件下探索系统的自由能格局和单轴压力拉伸反应。我们利用单个光学驱动中的温度和光控制之间的耦合,用于几种工作场景,包括温度调节的光机械快速触发不稳定性,特定的工作和阻塞应力。我们研究了依赖温度依赖性的发色团对光机械致动的影响。希望这些结果能够激发未来的基本研究和各种影像机械材料系统的新应用。

Photoactive liquid crystal elastomers are polymer networks of liquid crystal mesogens embedded with chromophores like azobenzene. They undergo large deformation when illuminated by light of a certain wavelength through photochemical reaction, inspiring exciting new applications. However, despite the recent progresses in both the experiment and theory of these materials, the fundamental understanding of the temperature effect on their photomechanical actuation through various molecular-to-mesoscale processes have remained largely unexplored. This paper constructs a theoretical model to investigate this temperature-modulated photomechanical actuation, by integrating different temperature-dependent processes into a continuum framework. The model studies a special working condition where the material is subjected to a uniaxial tensile load, a prescribed temperature, and a polarized light illumination. We explore the free energy landscape of the system and the uniaxial stress-stretch responses under various conditions. We exploit the coupling between individual controls of temperature and light in a single photomechanical actuation for several working scenarios, including the temperature-modulated photomechanical snap-through instability, specific work, and blocking stress. We study the effect of the temperature-dependent backward isomerization of chromophores on the photomechanical actuation. These results are hoped to motivate future fundamental studies and new applications of various photomechanical material systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源