论文标题
广义Ricci唯一的稳定性
The Stability of Generalized Ricci Solitons
论文作者
论文摘要
在本文中,我计算了广义爱因斯坦 - 希尔伯特函数的第二个变体公式,并证明了在某些曲率假设下,爱因斯坦歧管是线性稳定的。在本文的最后一部分中,我证明了动态稳定性和线性稳定性在稳定的梯度概括的Ricci Soliton $(G,H,F)$上等效,该章程概述了Kröncke,Haslhofer,Haslhofer,Sesum,Sesum,Raffero和Vezzoni所做的结果。
In this paper, I computed the second variation formula of the generalized Einstein-Hilbert functional and prove that a Bismut-flat, Einstein manifold is linearly stable under some curvature assumption. In the last part of the paper, I prove that dynamical stability and linear stability are equivalent on a steady gradient generalized Ricci soliton $(g, H,f)$ which generalizes the result done by Kröncke, Haslhofer, Sesum, Raffero, and Vezzoni.