论文标题

平衡状态的零温度极限在拓扑及可数的马尔可夫移位上的存在

Existence of the zero temperature limit of equilibrium states on topologically transitive countable Markov shifts

论文作者

Beltrán, Elmer R., Littin, Jorge, Maldonado, Cesar, Vargas, Victor

论文摘要

考虑具有有限的Gurevich压力和$ \ Mathrm {var} _1(ϕ)<\ iffty $的拓扑及可计数的马尔可夫移动$σ$和可总结马尔可夫电位$ ϕ $。我们证明了lim $ \ lim_ {t \ to \ infty}μ_t$在弱$^\ star $ topology中的存在,其中$μ_t$是与潜在$ tx $相关的唯一平衡状态。除此之外,我们提出了示例,其中存在零温度的极限,以满足更多一般条件的电势。

Consider a topologically transitive countable Markov shift $Σ$ and a summable Markov potential $ϕ$ with finite Gurevich pressure and $\mathrm{Var}_1(ϕ) < \infty$. We prove existence of the limit $\lim_{t \to \infty} μ_t$ in the weak$^\star$ topology, where $μ_t$ is the unique equilibrium state associated to the potential $tϕ$. Besides that, we present examples where the limit at zero temperature exists for potentials satisfying more general conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源