论文标题

使用数学建模预测放疗患者的结果

Predicting radiotherapy patient outcomes with real-time clinical data using mathematical modelling

论文作者

Browning, Alexander P., Lewin, Thomas D., Baker, Ruth E., Maini, Philip K., Moros, Eduardo G., Caudell, Jimmy, Byrne, Helen M., Enderling, Heiko

论文摘要

头颈癌患者的纵向肿瘤体积数据表明,可比治疗大小和阶段的肿瘤对相同的放射疗法分级方案的反应可能非常不同。通常建议在这种情况下预测数学模型,以预测治疗结果,并有潜力指导临床决策并为个性化的分级协议提供信息。在这种情况下,阻碍模型的有效使用是与产生各种可能患者反应所需的模型复杂性并列临床测量的稀疏性。在这项工作中,我们提出了肿瘤体积和肿瘤组成的隔室模型,尽管相对简单,但它仍能够产生广泛的患者反应。然后,我们开发新的统计方法,并利用现有临床数据的队列,以产生肿瘤体积进展的预测模型和在患者整个患者治疗过程中都会发展的不确定性水平。为了捕获患者间的变异性,所有模型参数都是特定于患者的,开发了一种自举粒子过滤器样方法,以建模一组训练数据作为先验知识。我们在看不见的数据中验证了我们的方法,并证明了训练有素的模型及其局限性的预测能力。

Longitudinal tumour volume data from head-and-neck cancer patients show that tumours of comparable pre-treatment size and stage may respond very differently to the same radiotherapy fractionation protocol. Mathematical models are often proposed to predict treatment outcome in this context, and have the potential to guide clinical decision-making and inform personalised fractionation protocols. Hindering effective use of models in this context is the sparsity of clinical measurements juxtaposed with the model complexity required to produce the full range of possible patient responses. In this work, we present a compartment model of tumour volume and tumour composition, which, despite relative simplicity, is capable of producing a wide range of patient responses. We then develop novel statistical methodology and leverage a cohort of existing clinical data to produce a predictive model of both tumour volume progression and the associated level of uncertainty that evolves throughout a patient's course of treatment. To capture inter-patient variability, all model parameters are patient specific, with a bootstrap particle filter-like Bayesian approach developed to model a set of training data as prior knowledge. We validate our approach against a subset of unseen data, and demonstrate both the predictive ability of our trained model and its limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源