论文标题
LEO卫星的主动终端识别,通道估计和信号检测
Active Terminal Identification, Channel Estimation, and Signal Detection for Grant-Free NOMA-OTFS in LEO Satellite Internet-of-Things
论文作者
论文摘要
本文研究了基于卫星的低地球轨道(LEO)卫星(IoT)的巨大连通性,以实现无缝的全球覆盖范围。我们建议将无授予的非正交多重访问(GF-NOMA)范式与新兴正交的时间频率空间(OTFS)调节进行整合,以适应大量的物联网访问,并减轻长长的往返延迟延迟和严重的多普勒陆地式 - 卫星链路(TSLS)的严重多普勒效应。在此基础上,我们提出了两阶段连续的主动终端识别(ATI)和通道估计(CE)方案以及低复杂性多用户信号检测(SD)方法。具体而言,在第一阶段,提出的训练序列辅助OTF(TS-OTFS)数据框架结构促进了关节ATI和粗ce,从而利用了陆地IoT终端的交通稀疏性以及稀疏的通道脉冲响应均已利用增强性能。此外,基于每个TSL的单个多普勒移位属性和延迟多普勒域通道的稀疏性,我们开发了一种参数方法来进一步完善CE性能。最后,开发了一种基于平方的平行时间域SD方法来检测复杂性相对较低的OTFS信号。模拟结果表明,在ATI,CE和SD的性能方面,所提出的方法比最先进的解决方案具有优势,这些性能与较长的往返潜伏期和严重的多普勒效应相遇。
This paper investigates the massive connectivity of low Earth orbit (LEO) satellite-based Internet-of-Things (IoT) for seamless global coverage. We propose to integrate the grant-free non-orthogonal multiple access (GF-NOMA) paradigm with the emerging orthogonal time frequency space (OTFS) modulation to accommodate the massive IoT access, and mitigate the long round-trip latency and severe Doppler effect of terrestrial-satellite links (TSLs). On this basis, we put forward a two-stage successive active terminal identification (ATI) and channel estimation (CE) scheme as well as a low-complexity multi-user signal detection (SD) method. Specifically, at the first stage, the proposed training sequence aided OTFS (TS-OTFS) data frame structure facilitates the joint ATI and coarse CE, whereby both the traffic sparsity of terrestrial IoT terminals and the sparse channel impulse response are leveraged for enhanced performance. Moreover, based on the single Doppler shift property for each TSL and sparsity of delay-Doppler domain channel, we develop a parametric approach to further refine the CE performance. Finally, a least square based parallel time domain SD method is developed to detect the OTFS signals with relatively low complexity. Simulation results demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of ATI, CE, and SD performance confronted with the long round-trip latency and severe Doppler effect.