论文标题

Nevanlinna类,Dirichlet系列和Szegö的问题

Nevanlinna class, Dirichlet series and Szegö's problem

论文作者

Guo, Kunyu, Ni, Jiaqi, Zhou, Qi

论文摘要

本文与Nevanlinna类,Dirichlet系列和Szegö的问题有关。正如我们将看到的那样,这些主题之间存在自然的联系。本文首先在这种情况下介绍了Nevanlinna类和Smirnov类,并将经典理论概括为有限的许多变量。这些结果适用于Szegö在无限多个变量中强大的空间上的问题。此外,本文还致力于研究Nevanlinna功能与Dirichlet系列之间的对应关系。

This paper is associated with Nevanlinna class, Dirichlet series and Szegö's problem in infinitely many variables. As we will see, there is a natural connection between these topics. The paper first introduces the Nevanlinna class and the Smirnov class in this context, and generalizes the classical theory in finitely many variables to the infinite-variable setting. These results applied to Szegö's problem on Hardy spaces in infinitely many variables. Moreover, this paper is also devoted to the study of the correspondence between the Nevanlinna functions and Dirichlet series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源