论文标题
P-AdicétaleTate的二元性与模量
Duality for p-adic étale Tate Twists with modulus
论文作者
论文摘要
在本文中,我们为模量对(x,d)定义了p-adicétaletate曲折,其中x是一个常规的半稳定家族,d是X上有效的卡地亚分割器,它在基本方案上是平坦的。本文的主要结果是适当模量对(x,d)的p-adic odite tate曲折的算术双重性,它是D.的不可还原成分的多重性,它是D.的多元系统的偶然性二元性。
In this paper, we define p-adic étale Tate twists for a modulus pair (X,D), where X is a regular semi-stable family and D is an effective Cartier divisor on X which is flat over a base scheme. The main result of this paper is an arithmetic duality of p-adic étale Tate twists for proper modulus pairs (X,D), which holds as a pro-system with respect to the multiplicities of the irreducible components of D.