论文标题

$ \ mathbb {r}^{d} $上的某些自相似度量的矩阵表示

Matrix representations for some self-similar measures on $\mathbb{R}^{d}$

论文作者

Wu, Yu-Feng

论文摘要

我们在$ \ mathbb {r}^d $上建立了矩阵表示,由Equictractive IFSS生成的$ \ mathbb {r}^d $满足有限类型条件。作为一个应用程序,我们证明了每种自相似度量的$ l^q $ -spectrum在$(0,\ infty)$上都是可区分的。这将冯(J.Lond。Math。Soc。(2)68(1):102--118,2003)的早期结果扩展到了更高的维度。

We establish matrix representations for self-similar measures on $\mathbb{R}^d$ generated by equicontractive IFSs satisfying the finite type condition. As an application, we prove that the $L^q$-spectrum of every such self-similar measure is differentiable on $(0,\infty)$. This extends an earlier result of Feng (J. Lond. Math. Soc.(2) 68(1):102--118, 2003) to higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源