论文标题
一种模块化操作员方法,用于纠缠因果关系
A Modular Operator Approach to Entanglement of Causally Closed Regions
论文作者
论文摘要
通过使用共形量子机械对应关系,沿着径向的因果区域显示了量子纠缠,该区域与Minkowski空间中因果钻石的共形径向杀伤场进行了保形量子机械对应关系。特别是,局部von Neumann代数和Tomita Takeaki模块化算子的理论应用于共形量子力学的因果钻石的纠缠结构。通过使用Tomita Takeaki模块化共轭操作员的同意和纠缠熵的措施显示了各自因果区域中当地状态的纠缠。用于保形量子力学因果钻石对应的全息熵公式。通过上述对应关系,由模块化自动形态的模块化自动形态与物理时间流的定义的热时间流之间建立了新的联系。这些结果通过两点热绿色的功能和模块化群流的热解释支持了可能的时空理论的想法。
Quantum entanglement is shown for causally separated regions along the radial direction by using a conformal quantum mechanical correspondence with conformal radial Killing fields of causal diamonds in Minkowski space. In particular, the theory of local von Neumann algebras and Tomita Takesaki modular operators is applied in the entanglement structure of causal diamonds in conformal quantum mechanics. The entanglement of local states in their respective causal regions is shown through the measures of concurrence and entanglement entropy using the Tomita Takesaki modular conjugation operator. A holographic entropy formula is derived for the conformal quantum mechanics causal diamond correspondence. A new connection is made between the thermal time flow defined by the modular group of automorphisms to the physical time flow in a causal diamond via the aforementioned correspondence. The thermal interpretation of these results via two-point thermal Green's functions and modular group flow supports the idea of a possible emergent theory of spacetime.