论文标题
超导$ i $$ \ OVERLINE {4} $ 3 $ M $ CSH $ _7 $模型用于高压下压缩C-S-H的电阻过渡温度数据
Superconducting $I$$\overline{4}$3$m$ CSH$_7$ model applied to resistive transition temperature data for compressed C-S-H at high pressure
论文作者
论文摘要
本文通过仅将考虑因素限制为电阻数据来更新版本1,并排除了Snider等人在Snider等人中报告的287.7-K基准,自然$ \ textbf {585} $,373(2020)。根据理论上发现的压缩$ i $ i $ i $ \ overline {\ textrm {4}} $ 3 $ 3 $ M $ csh $ _7 $ Sun等人的结构,物理学。 Rev. b $ \ textbf {101} $,174102(2020),其中包含类似于$ im $ $ $ $ $ $ + overline {\ textrm {\ textrm {3}} $ h $ h $ _3 $ s的sublattice,带有ch $ _4 $ intercalates。假设超导性的电子起源,类比是与早期在$ im $ $ $ $ $ $ $ \ overline {\ textrm {\ textrm {3}} $$ m $ h $ _3 $ s中进行超导性的工作,该模型是通过纯粹的距离$ emah $ emah $ qu. $ i $$ \ edline {\ textrm {4}} $ 3 $ 3 $ m $ csh $ _7 $的超导导向过渡温度被推导为$ t $ _ {\ textrm {c0}}} $ =(2/3) 1247.4 $ \ MATHRING {\ MATHRM {a}} $$^2 $ K是通用常数,$σ$是参与费用分数,$ a $是晶格参数。分析表明,与压力有关的$σ$持续的散装超导率,从$σ$ = 3.5增加,以前以$ im $ $ $ $ $ \ operline {3} $$ m $ h $ _3 $ s的速度确定,到$σ$ = 7.5,在高压下,还要额外参与C-H键电子。通过理论结构确定的$ A $和$ζ$,以最高压力(258和271 GPA)计算$ t $$ _ {\ textrm {c0}} $,这与电阻过渡到整体不确定性$ \ pm $ 3.5k。
This article updates version 1 by restricting consideration to only the resistive data and excluding the questioned 287.7-K datum reported for carbonaceous sulfur hydride in Snider et al., Nature $\textbf{585}$, 373 (2020). The superconducting transitions are considered in terms of the theoretically-discovered compressed $I$$\overline{\textrm{4}}$3$m$ CSH$_7$ structure of Sun et al., Phys. Rev. B $\textbf{101}$, 174102 (2020), which comprises a sublattice similar to $Im$$\overline{\textrm{3}}$$m$ H$_3$S with CH$_4$ intercalates. Positing an electronic genesis of the superconductivity, a model is presented in analogy with earlier work on superconductivity in $Im$$\overline{\textrm{3}}$$m$ H$_3$S, in which pairing is induced via purely electronic Coulomb interactions across the mean distance $ζ$ between the S and H$_4$ tetrahedra enclosing C. Theoretical superconducting transition temperatures for $I$$\overline{\textrm{4}}$3$m$ CSH$_7$ are derived as $T$$_{\textrm{C0}}$ = (2/3)$^{1/2}$ $σ^{1/2}$ $β$/$a$$ζ$, where $β$ = 1247.4 $\mathring{\mathrm{A}}$$^2$K is a universal constant, $σ$ is the participating charge fraction, and $a$ is the lattice parameter. Analysis suggests persistent bulk superconductivity with a pressure-dependent $σ$, increasing from $σ$ = 3.5, determined previously for $Im$$\overline{3}$$m$ H$_3$S, to $σ$ = 7.5 at high pressure owing to additionally participating C-H bond electrons. With $a$ and $ζ$ determined by theoretical structure, calculations of $T$$_{\textrm{C0}}$ at the highest pressures, 258 and 271 GPa, are in agreement with resistive transitions to within an overall uncertainty of $\pm$ 3.5 K.