论文标题

与图神经网络的多机器人协作感知

Multi-Robot Collaborative Perception with Graph Neural Networks

论文作者

Zhou, Yang, Xiao, Jiuhong, Zhou, Yue, Loianno, Giuseppe

论文摘要

与单个机器人相比,多种机器人的多机机器人系统(例如,空中机器人群)自然适合在多个任务中提供额外的灵活性,韧性和鲁棒性。为了增强自主机器人的决策过程和情境意识,多机器人系统必须以有效且有意义的方式协调其感知能力,以在代理中收集,共享和融合环境信息,以准确地获得上下文 - 适当的信息或获得适应性的信息或使传感器噪声或失败获得弹性。在本文中,我们提出了一个通用图形神经网络(GNN),其主要目标是在多机器人感知任务中,单个机器人的推理感知准确性以及对传感器故障和干扰的弹性。我们表明,所提出的框架可以解决多视觉视觉感知问题,例如单眼深度估计和语义分割。从多个空中机器人的角度收集的一些实验都使用了逼真的和真实的数据,这表明了拟议方法在具有挑战性的推理条件下的有效性,包括被重噪声和摄像机闭塞或失败损坏的图像。

Multi-robot systems such as swarms of aerial robots are naturally suited to offer additional flexibility, resilience, and robustness in several tasks compared to a single robot by enabling cooperation among the agents. To enhance the autonomous robot decision-making process and situational awareness, multi-robot systems have to coordinate their perception capabilities to collect, share, and fuse environment information among the agents in an efficient and meaningful way such to accurately obtain context-appropriate information or gain resilience to sensor noise or failures. In this paper, we propose a general-purpose Graph Neural Network (GNN) with the main goal to increase, in multi-robot perception tasks, single robots' inference perception accuracy as well as resilience to sensor failures and disturbances. We show that the proposed framework can address multi-view visual perception problems such as monocular depth estimation and semantic segmentation. Several experiments both using photo-realistic and real data gathered from multiple aerial robots' viewpoints show the effectiveness of the proposed approach in challenging inference conditions including images corrupted by heavy noise and camera occlusions or failures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源