论文标题

库仑驱动微梁:一种高效总参数模型的Chebyshev-Edgeworth方法

Coulomb actuated microbeams: A Chebyshev-Edgeworth approach to highly efficient lumped parameter models

论文作者

Schenk, Hermann A. G., Melnikov, Anton, Wall, Franziska, Gaudet, Matthieu, Stolz, Michael, Schuffenhauer, David, Kaiser, Bert

论文摘要

在先前的出版物中,我们证明,稳定且不稳定的平衡状态可以成功地模拟有限元分析(FEM)与持续方法。通过将直接的光学观测与有关Euler-Bernoulli特征模的模态分析相结合,在实验中审查了仿真结果。实验和仿真揭示了令人信服的证据表明,可以通过仅涉及单个自由度的欧拉 - 伯诺利(Euler-Bernoulli)零模式来对这种微束的物理进行建模的可能性。在本文中,我们介绍了相应的分析单度自由度总参数模型(LPM)。这个综合模型证明了光束弯曲对库仑奇异性本质的影响,可以在有压力加强的情况下轻松准确地计算引进电压,并且易于有效的频率响应计算。我们得出零模式LPM的方法基于Chebyshev-Edgeworth类型方法,这在分析概率理论中是常见的。尽管这里用于非常特殊的目的,但这种新型非线性动态系统的方法具有更广泛的范围。易于分析不同的边界条件,静电条纹场校正和挤压膜阻尼,以命名一些应用。

In a previous publication we demonstrated that the stable and unstable equilibrium states of prismatic Coulomb actuated Euler-Bernoulli micro-beams, clamped at both ends, can successfully be simulated combining finite element analysis (FEM) with continuation methods. Simulation results were experimentally scrutinised by combining direct optical observations with a modal analysis regarding Euler-Bernoulli eigenmodes. Experiment and simulation revealed convincing evidence for the possibility of modelling the physics of such a micro-beam by means of lumped parameter models involving only a single degree of freedom, the Euler-Bernoulli zero mode. In this paper we present the corresponding analytical single degree of freedom lumped parameter model (LPM). This comprehensive model demonstrates the impact of the beam bending on the nature of the Coulomb singularity, allows for an easy and accurate computation of the pull-in voltage in the presence of stress stiffening and is apt for efficient frequency response computations. Our method to derive the zero-mode LPM is based on a Chebyshev-Edgeworth type method as is common in analytical probability theory. While used here for a very particular purpose, this novel approach to non-linear dynamic systems has a much broader scope. It is apt to analyse different boundary conditions, electrostatic fringe field corrections and squeeze film damping, to name a few applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源