论文标题

基于神经形态视觉控制机器人钻孔系统的精确定位

Neuromorphic Vision Based Control for the Precise Positioning of Robotic Drilling Systems

论文作者

Ayyad, Abdulla, Halwani, Mohamad, Swart, Dewald, Muthusamy, Rajkumar, Almaskari, Fahad, Zweiri, Yahya

论文摘要

制造业目前正在通过前所未有的工业机器人的采用,目的是在范式上转变,机器视觉是一种关键的感知技术,使这些机器人能够在非结构化的环境中执行精确的操作。但是,常规视觉传感器对照明条件和高速运动的敏感性限制了生产线的可靠性和工作率。神经形态视觉是一项最近的技术,其潜力可以通过其高时间分辨率,低潜伏期和广泛的动态范围来应对传统视觉的挑战。在本文和第一次,我们提出了一种新型的基于神经形态视觉的控制器,以更快,更可靠的加工操作,并提出一个完整的机器人系统,该机器人系统能够以次数准确性执行钻探任务。我们提出的系统使用两个感知阶段将目标工件定位在3D中,我们专门为神经形态摄像机的异步输出而开发。第一阶段对工件的姿势进行初始估计进行了多视图重建,第二阶段使用圆形孔检测来完善工件局部区域的估算。然后,机器人精确地定位了钻孔终端效应器,并使用基于位置和基于图像的视觉伺服伺服方法在工件上钻取目标孔。在实验中,对钻孔的螺母孔孔进行了实验验证,该钻头孔在任意放置在无调照明环境中的工件上进行了验证。实验结果证明了我们解决方案的有效性,平均位置误差小于0.1 mm,并证明使用神经形态视觉可以克服了常规相机的照明和速度限制。

The manufacturing industry is currently witnessing a paradigm shift with the unprecedented adoption of industrial robots, and machine vision is a key perception technology that enables these robots to perform precise operations in unstructured environments. However, the sensitivity of conventional vision sensors to lighting conditions and high-speed motion sets a limitation on the reliability and work-rate of production lines. Neuromorphic vision is a recent technology with the potential to address the challenges of conventional vision with its high temporal resolution, low latency, and wide dynamic range. In this paper and for the first time, we propose a novel neuromorphic vision based controller for faster and more reliable machining operations, and present a complete robotic system capable of performing drilling tasks with sub-millimeter accuracy. Our proposed system localizes the target workpiece in 3D using two perception stages that we developed specifically for the asynchronous output of neuromorphic cameras. The first stage performs multi-view reconstruction for an initial estimate of the workpiece's pose, and the second stage refines this estimate for a local region of the workpiece using circular hole detection. The robot then precisely positions the drilling end-effector and drills the target holes on the workpiece using a combined position-based and image-based visual servoing approach. The proposed solution is validated experimentally for drilling nutplate holes on workpieces placed arbitrarily in an unstructured environment with uncontrolled lighting. Experimental results prove the effectiveness of our solution with an average positional errors of less than 0.1 mm, and demonstrate that the use of neuromorphic vision overcomes the lighting and speed limitations of conventional cameras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源