论文标题
Weyl系数的规范系统定期变化
Canonical systems whose Weyl coefficients have regularly varying asymptotics
论文作者
论文摘要
对于二维规范系统$ y'(t)= zjh(t)y(t)y(t)$ in Interval $(0,l)$,$ 0 <l \ le \ le \ infty $ 其Hamiltonian $ h $是A.E. \阳性半菲尼特,用$ q_h $表示Weyl系数。 de〜branges的反光谱定理指出分配 $ h \ mapsto q_h $是痕量正态化的哈密顿人和内凡林纳函数之间的培养。 我们证明$ q_h $对$ i \ infty $具有渐近性 定期变化的功能的某些(复杂)倍数是 且仅当原始$ m $ $ h $定期或迅速变化为$ 0 $ 而且其非对角线条目不会过多振荡。 $ q_h $ to $ i \ infty $的渐近学中的领先术语是相关的 按照明确的公式,$ m $ to $ 0 $的行为。 绝对值的增长速度仅取决于$ m $的对角线条目 虽然领先系数的参数对应于相对大小 违约条目。 翻译成频谱度量$μ_h$和hamiltonian $ h $, 这意味着$ h $的对角线决定了 $μ_h$的对称分配函数以及相对大小和 其非对角线的标志分布是$μ_H$的不对称性措施。 结果适用于Sturm--liouville方程,凯林字符串和广义不确定字符串 证明了相应Weyl系数的渐近学特征。
For a two-dimensional canonical system $y'(t)=zJH(t)y(t)$ on an interval $(0,L)$ with $0<L\le\infty$ whose Hamiltonian $H$ is a.e.\ positive semidefinite, denote by $q_H$ its Weyl coefficient. De~Branges' inverse spectral theorem states that the assignment $H\mapsto q_H$ is a bijection between trace-normalised Hamiltonians and Nevanlinna functions. We prove that $q_H$ has an asymptotics towards $i\infty$ whose leading term is some (complex) multiple of a regularly varying function if and only if the primitive $M$ of $H$ is regularly or rapidly varying at $0$ and its off-diagonal entries do not oscillate too much. The leading term in the asymptotics of $q_H$ towards $i\infty$ is related to the behaviour of $M$ towards $0$ by explicit formulae. The speed of growth in absolute value depends only on the diagonal entries of $M$, while the argument of the leading coefficient corresponds to the relative size of the off-diagonal entries. Translated to the spectral measure $μ_H$ and the Hamiltonian $H$, this means that the diagonal of $H$ determines the growth of the symmetrised distribution function of $μ_H$, and the relative size and sign distribution of its off-diagonal is a measure for the asymmetry of $μ_H$. The results are applied to Sturm--Liouville equations, Krein strings and generalised indefinite strings to prove similar characterisations for the asymptotics of the corresponding Weyl coefficients.