论文标题
使用深神经网络的单光多光谱定量相成像
Single-shot multispectral quantitative phase imaging using deep neural network
论文作者
论文摘要
多光谱定量相成像(MS-QPI)是一种无标签的技术,可确定样品的形态变化,折射率变化和光谱信息。实施此技术以提取定量信息的瓶颈是需要超过两个测量来生成MS-QPI图像。我们使用高度敏感的数字全息显微镜(DNN)提出了一种单发MS-QPI技术。我们的方法首先获取对应于多个波长(λ= 532、633和808 nm)的干涉数据集。获得的数据集用于训练生成对抗网络(GAN),以从单个输入干涉图生成多光谱定量相位图。该网络在两个不同的样本上进行了训练和验证,即光波导和MG63骨肉瘤细胞。此外,通过将预测的相位图与实验获得和处理的多光谱相图进行比较,可以对框架进行验证。当前的MS-QPI+DNN框架可以进一步增强光谱QPI的能力,以提高化学特异性,而无需复杂的仪器和色彩交谈。
Multi-spectral quantitative phase imaging (MS-QPI) is a cutting-edge label-free technique to determine the morphological changes, refractive index variations and spectroscopic information of the specimens. The bottleneck to implement this technique to extract quantitative information, is the need of more than two measurements for generating MS-QPI images. We propose a single-shot MS-QPI technique using highly spatially sensitive digital holographic microscope assisted with deep neural network (DNN). Our method first acquires the interferometric datasets corresponding to multiple wavelengths (λ=532, 633 and 808 nm used here). The acquired datasets are used to train generative adversarial network (GAN) to generate multi-spectral quantitative phase maps from a single input interferogram. The network is trained and validated on two different samples, the optical waveguide and a MG63 osteosarcoma cells. Further, validation of the framework is performed by comparing the predicted phase maps with experimentally acquired and processed multi-spectral phase maps. The current MS-QPI+DNN framework can further empower spectroscopic QPI to improve the chemical specificity without complex instrumentation and color-cross talk.