论文标题
对未期的石墨烯中电子相互作用与库仑相互作用之间相互作用的非扰动研究
A non-perturbative study of the interplay between electron-phonon interaction and Coulomb interaction in undoped graphene
论文作者
论文摘要
在凝结的系统中,电子在某些条件下进行两种不同的相互作用。即使这两种相互作用都很弱,由于两种相互作用的相互作用引起的复杂性,也很难执行扰动计算。当一两个相互作用很强时,普通的扰动理论可能无效。在这里,我们将未稳定的石墨烯视为一个例子,并提供了对电子波相互作用和库仑相互作用的相互作用的非扰动量子场理论分析。我们将这两种相互作用在相等的基础上处理,并得出完整的Dirac-Fermion传播器的精确Dyson-Schwinger积分方程。该方程取决于几个复杂的相关函数,因此很难处理。幸运的是,我们发现这些相关函数遵守了许多确切的身份,这使我们能够证明完整的费米昂传播器的dyson-schwinger方程是自锁定的。解决这个自锁定方程后,我们获得了dirac费物的重新归一化速度,并表明其能量(动量)依赖性主要由电子 - 波(Coulomb)相互作用确定。特别是,重归于的速度表现出对数动量依赖性和非单调能量依赖性。
In condensed-matter systems, electrons are subjected to two different interactions under certain conditions. Even if both interactions are weak, it is difficult to perform perturbative calculations due to the complexity caused by the interplay of two interactions. When one or two interactions are strong, ordinary perturbation theory may become invalid. Here we consider undoped graphene as an example and provide a non-perturbative quantum-field-theoretic analysis of the interplay of electron-phonon interaction and Coulomb interaction. We treat these two interactions on an equal footing and derive the exact Dyson-Schwinger integral equation of the full Dirac-fermion propagator. This equation depends on several complicated correlation functions and thus is difficult to handle. Fortunately, we find that these correlation functions obey a number of exact identities, which allows us to prove that the Dyson-Schwinger equation of the full fermion propagator is self-closed. After solving this self-closed equation, we obtain the renormalized velocity of Dirac fermions and show that its energy (momentum) dependence is dominantly determined by the electron-phonon (Coulomb) interaction. In particular, the renormalized velocity exhibits a logarithmic momentum dependence and a non-monotonic energy dependence.