论文标题
下午到距离耦合:收敛分析和先验错误估计
Afternote to Coupling at a distance: convergence analysis and a priori error estimates
论文作者
论文摘要
Cockburn,Sayas和Solano在他们的文章“距离HDG和BEM处的耦合”中提出了杂交不连续的Galerkin方法(HDG)和边界元素方法(BEM)的迭代耦合,以解决外部Dirichlet问题。数值方案的新颖性包括使用计算域进行HDG离散化,其边界与耦合界面无一致。在他们的文章中,作者为收敛提供了广泛的数值证据,但是当时的收敛证明和错误分析仍然难以捉摸。在本文中,我们通过证明算法放松的收敛性并为数值解决方案提供了先验错误估计来填补空白。
In their article "Coupling at a distance HDG and BEM", Cockburn, Sayas and Solano proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using a computational domain for the HDG discretization whose boundary did not coincide with the coupling interface. In their article, the authors provided extensive numerical evidence for convergence, but the proof of convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.