论文标题

独立于历史的示踪剂:密集星际介质物理条件的健忘分子探针

History-independent tracers: Forgetful molecular probes of the physical conditions of the dense interstellar medium

论文作者

Holdship, Jonathan, Viti, Serena

论文摘要

分子线发射是对天体物理物体物理条件的强大探针,但可能很复杂,并且通常不清楚哪些过渡是希望限制给定参数的观察者的最佳目标。因此,我们产生了可以忽略气体历史的分子物种列表,从而消除了主要的建模复杂性。然后,我们确定这些物种中最好的观察,以限制各种物理参数。为了实现这一目标,我们使用具有不同化学史的大量化学模型来确定哪些物种在1 Myr时对初始条件不敏感。然后,我们使用辐射转移模型来产生这些分子的每个过渡的强度。我们最终计算物理参数与所有过渡和过渡比之间的共同信息,以便对它们在确定给定参数的值时进行排名。 我们发现48种对气体的化学历史不敏感的物种,其中23种具有可碰撞数据。我们使用具有各种气体特性的相互信息制作了这些物种的所有过渡和比率的排名列表。我们表明,互信息是通过恢复已知探针来限制物理参数的充分度量,并证明当包括高得分特征时,随机森林回归模型变得更加准确。因此,该列表可用于选择目标转变以进行观察,以最大程度地提高有关这些物理参数的知识。

Molecular line emission is a powerful probe of the physical conditions of astrophysical objects but can be complex to model, and it is often unclear which transitions would be the best targets for observers who wish to constrain a given parameter. We therefore produce a list of molecular species for which the gas history can be ignored, removing a major modelling complexity. We then determine the best of these species to observe when attempting to constrain various physical parameters. To achieve this, we use a large set of chemical models with different chemical histories to determine which species have abundances at 1 MYr that are insensitive to the initial conditions. We then use radiative transfer modelling to produce the intensity of every transition of these molecules. We finally compute the mutual information between the physical parameters and all transitions and transition ratios in order to rank their usefulness in determining the value of a given parameter. We find 48 species that are insensitive to the chemical history of the gas, 23 of which have collisional data available. We produce a ranked list of all the transitions and ratios of these species using their mutual information with various gas properties. We show mutual information is an adequate measure of how well a transition can constrain a physical parameter by recovering known probes and demonstrating that random forest regression models become more accurate predictors when high-scoring features are included. Therefore, this list can be used to select target transitions for observations in order to maximize knowledge about those physical parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源