论文标题

使用季节性天气预测和生存时间方法的概率预测硬冻结的时间

Probabilistic prediction of the time to hard freeze using seasonal weather forecasts and survival time methods

论文作者

Roksvåg, Thea, Lenkoski, Alex, Scheuerer, Michael, Heinrich-Mertsching, Claudio, Thorarinsdottir, Thordis L.

论文摘要

农业粮食生产和自然生态系统取决于描述气候条件下季节性模式的一系列季节性气候指标。本文提出了一个概率的预测框架,以预测无冻结季节的结束,或者在低于0 $^\ Circ $ c(此处称为Hard Freeze)的平均每日近地表空气温度的时间。预测框架基于哥白尼气候数据存储提供的多模型季节性预测集合,并使用生存分析中的技术来实现事实数据。原始的平均每日温度预测是在统计上进行的,并在构建事件时间预测之前对每个模型系统进行平均值和方差校正。在1993 - 2020年期间涵盖挪威地区的芬诺斯坎迪亚地区的一项案例研究中,发现所提出的预测在10月1日初始化日期之后的预测日期的平均预测时间不到40天的位置,从基于观察的数据产品的气候预测胜过了气候预测。

Agricultural food production and natural ecological systems depend on a range of seasonal climate indicators that describe seasonal patterns in climatological conditions. This paper proposes a probabilistic forecasting framework for predicting the end of the freeze-free season, or the time to a mean daily near-surface air temperature below 0 $^\circ$C (here referred to as hard freeze). The forecasting framework is based on the multi-model seasonal forecast ensemble provided by the Copernicus Climate Data Store and uses techniques from survival analysis for time-to-event data. The original mean daily temperature forecasts are statistically post-processed with a mean and variance correction of each model system before the time-to-event forecast is constructed. In a case study for a region in Fennoscandia covering Norway for the period 1993-2020, the proposed forecasts are found to outperform a climatology forecast from an observation-based data product at locations where the average predicted time to hard freeze is less than 40 days after the initialization date of the forecast on October 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源