论文标题
自我对准活性粒子在流动背景下的异常扩散
Anomalous diffusion of self-align active particle in flow background
论文作者
论文摘要
活性颗粒(即自propell的颗粒或称为Microswimmers),与被动的布朗颗粒不同,具有更复杂的翻译和角动力学,可以产生一系列异常的转运现象。在这封信中,我们研究了一个自poled的尖端粒子的二维动力学,并在Poiseuille流动中移动自我对准特性。结果表明,随着温度变化和背景poiseuille流动的变化,有效的异常扩散系数急剧变化。还获得了移动速度的松弛特性和颗粒的位置概率分布函数。观察几种类型的异常扩散和正常扩散状态表明自我对准特性可能是通用的,可以用作将来的实验分析和建模的参考。
Active particles (i.e., self-propelled particles or called microswimmers), different from passive Brownian particles, possess more complicated translational and angular dynamics, which can generate a series of anomalous transport phenomena. In this letter, we study the two-dimensional dynamics of a self-propelled pointlike particle with self-aligning property moving in Poiseuille flow. The results show the effective anomalous diffusion coefficient changes sharply with the change of temperature and speed of background Poiseuille flow. The relaxation property of moving speed and the position probability distribution function of particles is also obtained. The observation of several types of anomalous diffusion and normal diffusion regime indicates the self-aligning property may be universal and can be used as a reference for future experiments analysis and modeling.